
COMPUTER GRAPHICS
California State University, Fresno

What is Shading?

• Calculating how a 3D object should look, taking
lighting, vertex and color into account

• Depends on:
- mesh data

• vertices, colors, textures, etc.

- lighting properties
• type of light, position of light, etc.

- shading algorithm used

• How is it done?
Basically by running a script on your graphics card. This will be a

program used to determine the final surface properties of an object or

image

Simpler Shader Definition

• http://madebyevan.com/webgl-water/

• A program that can affect:
• the position of a vertex

• the color of a pixel

• or both

• This can include arbitrarily complex descriptions of:
• light absorption

• light diffusion

• texture mapping

• reflection

• refraction

• shadowing

• surface displacement

• post-processing effects

http://madebyevan.com/webgl-water/

Shader Languages

• HLSL, GLSL, Cg (C for Graphics), CUDA, OpenCL

• Compile to Assembly

• Shader compilers are on the GPU

• Compiling is done at runtime

Shading Languages

• Shader programs may be written for different
platforms
• can operate on GPU

• Different platforms use different shading languages,
e.g.
- High-Level Shading Language (HLSL)

• uses C-like code

- OpenGL Shading Language (GLSL)
• uses C-like code

- Nvidia Cg
• uses assembly-like code

- Pixar’s RenderMan
• the pioneer among shaders

Shader Types

• Vertex Shader

• Pixel Shader (Fragment Shader in GLSL)

• Geometry Shader

• Compute Shader

Types of Shaders

• Vertex Shaders

- allows programmer to control transformation & lighting operations

(T&L)

• Pixel Shading

- The output of a vertex shader provides input to a pixel shader

- allows programmer to ultimately decide final pixel colors before

rasterization

Vertex Shaders

• http://jeremybouny.fr/ocean/demo/

• https://www.clicktorelease.com/code/bumpy-metaballs/

http://jeremybouny.fr/ocean/demo/
https://www.clicktorelease.com/code/bumpy-metaballs/

Shader Code

• Any data you want those functions to have access to must

be provided to the GPU

• There are 4 ways a shader can receive data.

o Attributes and Buffers

o Uniforms

o Textures

o Varyings

Data Types

• Attributes and Buffers
• Buffers are arrays of binary data you upload to the GPU

• Usually buffers contain

o Positions

o Normals

o Texture coordinates

o Vertex

o Colors etc.

Data Types … cntd.

• Uniforms
o Uniforms are effectively global variables you set before you execute

your shader program.

• Textures
o Textures are arrays of data you can randomly access in your shader

program.

o The most common thing to put in a texture is image data but textures
are just data and can just as easily contain something other than RGB.

• Varyings
o Varyings are a way for a vertex shader to pass data to a fragment

shader.

o Depending on what is being rendered, points, lines, or triangles, the
values set on a varying by a vertex shader will be interpolated while
executing the fragment shader.

basic non-vector types:

bool: conditional type, values may be either true or false

int: a signed, two's complement, 32-bit integer

uint: an unsigned 32-bit integer

float: an IEEE-754 single-precision floating point number

Double: an IEEE-754 double-precision floating-point number

