Computer Graphics

Lecture 21

Parametric equation of a Line

$v=\langle 7,3\rangle$
v is called a position vector of the point $(7,3)$

Find a equation of a line in terms of position vector that lies on the line

Any given position vector p
Can be represented by

$$
p=v+t d
$$

where t is a scalar

Example: Find the equation of line passing ($1,-1,4$) in direction of $\langle 3,5,-1\rangle$
$\mathrm{p}=\langle 1,-1,4\rangle+\mathrm{t}\langle 3,5,-1\rangle$
$\mathrm{x}=1+3 \mathrm{t}$
$y=-1+5 t$
$\mathrm{z}=4-\mathrm{t}$

Likewise line between $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ given by
$\mathrm{x}=\mathrm{x} 1+\mathrm{t}\left(\mathrm{x}_{2}-\mathrm{X}_{1}\right)$
$\mathrm{y}=\mathrm{y} 1+\mathrm{t}\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)$
$\mathrm{Z}=\mathrm{Z} 1+\mathrm{t}\left(\mathrm{Z}_{2}-\mathrm{Z}_{1}\right)$

Can denote as
$\mathrm{x}=\mathrm{x}_{1}+\mathrm{t}^{\star} \mathrm{dx}$
$y=y_{1}+t^{*} d y$
$z=Z_{1}+t^{*} d z$

Find intersect point of line and a plane
Given plain $\mathrm{x}+2 \mathrm{y}+\mathrm{z}=6$;
Line move from $(1,2,3)$ and $(4,3,8)$
Steps:

- Find x, y, z in terms of t
- Place x, y, z plain equation and solve for t
- find appropriate points by applying t to x, y, z

Barycentric Coordinates

Triangles are the fundamental primitive used in 3D modeling programs.

We can express any point p coplanar to the Triangle as
$\mathrm{P}=\mathrm{a}+\beta(\mathrm{b}-\mathrm{a})+\lambda(\mathrm{c}-\mathrm{a})$
We rewrite this as

$$
\begin{aligned}
& \mathrm{P}(\alpha, \beta, \lambda)=\alpha \mathrm{a}+\beta \mathrm{b}+\lambda \mathrm{c} \text { where } \\
& \alpha \equiv 1-\beta-\lambda
\end{aligned}
$$

Example

Let

$$
\begin{aligned}
& a=p(1,0,0) \\
& b=p(0,1,0) \\
& c=p(0,0,1)
\end{aligned}
$$

Point p is inside the triangle if $0<\alpha<1$
$0<\beta<1$
$0<\lambda<1$

* If one component is zero
- P is on an edge
* If two components are zero
- P is on a vertex

Ray Tracing

Ray Tracing Fundamentals

, Generate primary ray

- shoot rays from eye through sample points on film plane
- sample point is typically center of a pixel
- Ray-object intersection
- find first object in scene that ray intersects with (if any)
- use parametric line equation for ray, so smallest t value
- Calculate lighting (i.e., color)
- use illumination model to determine direct contribution from light sources (light rays)
- reflective objects recursively generate secondary rays
- No diffuse reflection rays => RT is limited approximation to global illumination

Recursive ray tracing

http:/ /learningthreejs.com/blog /2012/01/20/casting-shadows/

Ray-Object Intersection

At what points (if any) does the ray intersect an object?

- Points on a ray have form $\boldsymbol{P}+t \boldsymbol{d}$ where t is any non-negative real number
- A surface point Q lying on an object has the property of $f(Q)$
- Combining, we want to know "For which values of t is $f(\boldsymbol{P}+t \boldsymbol{d})=$?"

- We are solving a system of simultaneous equations in x, y (in 2D) or x, y, z (in 3D)

2 D ray-circle intersection example

b Consider the eye-point $\boldsymbol{P}=(-3,1)$, the direction vector $\boldsymbol{d}=(.8,-.6)$ and the unit circle: $f(x, y)=x^{2}+y^{2}-R^{2}$

- A typical point of the ray $\mathrm{Q}=\boldsymbol{P}+t \boldsymbol{d}=(-3,1)+t(.8,-.6)=(-3+.8 \mathrm{t}, 1-.6 t)$
- Plugging this into the equation of the circle: $f(\mathrm{Q})=f(-3+.8 \mathrm{t}, 1-.6 t)=(-3+.8 t)^{2}+(1-.6 t)^{2}-1$
- Expanding, we get: $9-4.8 t+.64 t^{2}+1-1.2 t+.36 t^{2}-1$
(Setting this equal to zero, we get: $t^{2}-6 t+9=0$
- Using the quadratic formula: roots $=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

We get: $t=\frac{6 \pm \sqrt{36-36}}{2}, \quad t=3,3$

- Because we have a root of multiplicity 2, ray intersects circle at only one point (i.e., it's tangent to the circle)
- Use discriminant $\mathrm{D}=b^{2}-4 a c$ to quickly determine if true intersection:
- if $D<0$, imaginary roots; no intersection
- if $D=0$, double root; ray is tangent
- if $D>0$, two real roots; ray intersects circle at two points

Barycentric ray-triangle intersection

Every point on the plane can be written in the form

$$
\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
$$

for some numbers β and γ.
If the point is also on the ray then it is

$$
\mathbf{p}+t \mathbf{d}
$$

for some number t.
Set them equal: 3 linear equations in 3 variables

$$
\mathbf{p}+t \mathbf{d}=\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a})
$$

Barycentric ray-triangle intersection

$$
\begin{aligned}
\mathbf{p}+t \mathbf{d} & =\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a}) \\
\beta(\mathbf{a}-\mathbf{b})+\gamma(\mathbf{a}-\mathbf{c})+t \mathbf{d} & =\mathbf{a}-\mathbf{p} \\
{\left[\begin{array}{lll}
\mathbf{a}-\mathbf{b} & \mathbf{a}-\mathbf{c} & \mathbf{d}
\end{array}\right]\left[\begin{array}{l}
\beta \\
\gamma \\
t
\end{array}\right] } & =[\mathbf{a}-\mathbf{p}] \\
{\left[\begin{array}{lll}
x_{a}-x_{b} & x_{a}-x_{c} & x_{d} \\
y_{a}-y_{b} & y_{a}-y_{c} & y_{d} \\
z_{a}-z_{b} & z_{a}-z_{c} & z_{d}
\end{array}\right]\left[\begin{array}{l}
\beta \\
\gamma \\
t
\end{array}\right] } & =\left[\begin{array}{l}
x_{a}-x_{p} \\
y_{a}-y_{p} \\
z_{a}-z_{p}
\end{array}\right]
\end{aligned}
$$

Cramer's Rule

$2 x+y+z=3, x-y-z=0, x+2 y+z=0$ find x, y, z
Evaluating each determinant of the following

$$
\begin{aligned}
& D=\left|\begin{array}{ccc}
2 & 1 & 1 \\
1 & -1 & -1 \\
1 & 2 & 1
\end{array}\right| \begin{array}{c}
(-2)+(-1)+(2) \\
-(-1)-(-4)-(1)=3
\end{array} \\
& D_{x}=\left|\begin{array}{ccc}
3 & 1 & 1 \\
0 & -1 & -1 \\
0 & 2 & 1
\end{array}\right|=\begin{array}{c}
(-3)+(0)+(0) \\
-(0)-(-6)-(0)=-3+6=3
\end{array} \\
& D_{y}=\left|\begin{array}{ccc}
2 & 3 & 1 \\
1 & 0 & -1 \\
1 & 0 & 1
\end{array}\right| \begin{array}{c}
(0)+(-3)+(0) \\
-(0)-(0)-(3)=-3-3=-6
\end{array} \\
& D_{z}=\left|\begin{array}{ccc}
2 & 1 & 3 \\
1 & -1 & 0 \\
1 & 2 & 0
\end{array}\right|=\begin{array}{c}
(0)+(0)+(6) \\
-(-3)-(0)-(0)=6+3=9
\end{array} \\
& x=D x / D, \\
& y=D y / D \text {, } \\
& \mathrm{z}=\mathrm{Dz} / \mathrm{D} \\
& x=3 / 3=1 \text {, } \\
& y=-6 / 3=-2 \text {, } \\
& z=9 / 3=3
\end{aligned}
$$

Distance between point to a line

Example

Distance from ($1,4,-2$) to line containing
$(3,1,-2) \&(6,-2,1)$

$$
\begin{aligned}
\mathrm{v} & =\langle 1-3,4-1,-2+2\rangle \\
& =\langle-2,3,0\rangle \\
\mathrm{u} & =\langle 6-3,-2-1,1+2\rangle \\
& =\langle 3,-3,3\rangle \\
\mathrm{vxu} & =\langle 9,6,-3\rangle
\end{aligned}
$$

Dist $=\|v x u\| /\|u\|$

$$
=\sqrt{14 / 3}
$$

Ray Intersect Sphere

If $\mathrm{d}<\mathrm{r}$ ray hits the sphere

