Computer Graphics



What is Bezier curve

A Bézier curve is a parametric curve that is used to draw smooth lines

Named after Pierre Bézier who used them for designing cars at Renault,
actually invented by Paul de Casteljau 3 years earlier whilst working for
Citroen

Common applications include CAD software, 3D modelling and typefaces
An n degree Bézier curve is defined using n + 1 control points

Translations can be easily applied to the control points



Bezier curve

* Parametric Equation of the line
Line (x5, yy) to (xz,¥;)

Consider t: range from 0 to 1

At Start of the line (x4, y;) t=0
At End of the line (x;, y;) t=1

At3/," of the line path

g

- (l’;,y] ).A-"':_:-'I;“-
t=3/, -

The location is
x=14xy +3/42;
y=aw1 + 3432



Attimet
x=(1-t).x; + t.x;
y=(1-t).y, +t.y;

X=x; —x5.t+ t.x3

=x; + t(x; = x;)

y=y1=n.t+ty:
=y; + (2 = »)

Parametric Line Equation is

X = x1 + tAx
y =y, +tly
X =xy + thx

y =y +thy



Idea behind Bezier curve

Let py, p; and p;,p, be two convex combinations

P1

Qp = (1-t)pottp;
Q, = (I-t)py+tp,
R=(1-t)Q, + tQ,

P2

As t goes from 0 to 1, R moves along a
parabolic path from p, to p,.



R = (1-t)Q0 + tQ1
Mapping R when t moves from 0 to 1
R = (1-t)[(1-t)po+tp; [+ t{(1-t)ps +tp,]
= (1-t)°pot+ 2(1-t)tp; +t°p,
Since (1-t)?+ 2(1-t)t+t?> =1 (Binomial theorem)

R consider as convex combination of p, p; P,

where
Ot=1and (1-t)>20, 2(1-t)t=0,t2=0



Cubic Bezier curve

Po, P1 P2, P53 are fixed points

Qo = (1-t)pot+tp,
Q; = (I-t)p;*+tp,
Q, = (1-t)p, + tp;
Ry = (1-6)Qp + tQ,
R, = (1-1)Q, + tQ,
S = (1-H)R, + tR;

Q’b

When t moves from 0 to 1, S trace out the fine Curv



Ry = (1-t)?py+ 2(1-t)tp; +t*p,
R; = (1-t)*py+ 2(1-t)tp,+tp;

S = (1-)[(1-t)*py+ 2(1-t)tp,+t2p, |+ t[(1-t)*p;+ 2(1-t)tp,+t2ps]

S = (1-t)3py+ 3(1-t)%tp, + 3(1-t)?p,+t3p,

Since (1-t)’p,+ 3(1-t)*tp; + 3(1-t)t>p,+p;=1 (Binomial theorem)

S consider as convex combination of Po, P1, P2, P3
where

0O<t=1and (1-t)320, 2(1-t)t=20,t3=0



Higher degree of Bezier curve

oP, oP,
oP, oP,

Po t=.60 oP,

pP,

Py t=.74 UP, &P, t=.96 oP,

More control points leads into higher degree Bézier curve
—> Higher degree Bernstein Polynomials



polynomials

A polynomial of degree n is a function of the form

_ n n-1 2 0
f(x)=ax"+a x""+...+ax’+ax+a

In other words

n

E n 2
”,.l' = o "'”l.l"‘—”;_).f' =T & %

i=0
Polynomials of different degrees
flr)=a+ 1.
glz)=2"+2+ 1.

hiz) =2 + 2% + 2+ 1.

i(x)=2"+2"+2°+2+ 1.

T

+ A,

linear
quadratic
cubic

quartic



De Casteljau Algorithm

The derivation process use here is known as de Casteljau’s algorithm.

Let P; ; denote the control points where P,  are the original control points
Py to P>, P; are the points (0 to and Pyo is C'(t) then

Fog = (1 — )8 31 + 8P4 .49
P; ; depends on the points P; ;1 and P11, i.e.,

Fgax > By
oS

Byt -1

where the horizontal arrow denotes the (1 — t) coefficient and the diagonal
arrow denotes the 7 coefficient



Fi=(Q1—t)F ;1 +tFy -1

r:'»ll
A cubic Bézier curve is defined by 4 control points: Py, P o, Poo and Ps g

Pos=(1—1)*Ppo+3t(1 —t)®P1 o+ 3t2(1 — t)Pop + t° Psp.

1’1.n Pl.l 1"_'.u

Ptl,lr ]—,f:_ll



degree of Bezier curve

The general form of a degree n Bézier curve defined by the control points P,
(where i =0, 1,..., n) is

C(t) =) bia(t)P,

where b, ,,(t) are called Bernstein polynomials that are defined using

. 1 . .
bin(t) = ( .)f’{l =),
l

and (") is the Binomial coefficient.



The Binomial Coefficient

The Binomial coefficient is written using (") and is read as “n choose "

since it gives the number of ways of choosing i items from a set of n items

ny n!
i) il(n—i)

where n! denotes the factorial of n

Pascal’s triangle
n=>~0: 1

= 1: 1 1
n = 2 i | 2 1
n =3 1 3 3 1

n=4. 1 4 6 4 1



Case of cubic Bernstein
Polynomials

_ Y . .
bin(t) = (.)f’(l — 5",
;

For example, the Bernstein polynomials for a cubic Bézier curve are



Behavior of Bernstein
Polynomials




Bézier curve in Matrix form

In order to save computational effort, Bézier curves are precalculated and
expressed in matrix form as follows:

f”
:j;'(fn 1\
Ct)y=(Po Pr +++ Po1 Pu)M]
f

\ 1/

where M isan (n + 1) X (n + 1) matrix.



Consider the quadratic Bézier curve with the brackets expanded out

C(t) = (t? — 2t + 1) Po + (—2t° + 2t) P, + t* P,
&

this can be expressed in matrix form as

city=(Ph P, P)|-2 2 o] |1

Ct)y=(Po Pi P> Ps)



Bezier curve Properties

a Bézier curve begins at point I and ends at point P,;

a Bézier curve is a straight line if and only if it is possible to draw a straight
line through all of the control points;

the start and end of a Bézier curve is tangental to the start and end section
of the control polygon;

a Bézier curve can be split into two Bézier curves;

a Bézier curve is contained within its control polygon. This is known as the
convex hull property




Examples with changing control
points
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