
Computer Graphics

Lecture 10

Clipping Algorithms
 All objects in the real world have size. We use a unit of measure to

describe both the size of an object as well as the location of the object in
the real world.

 Sometimes the complete picture of object in the world coordinate system
is too large and complicate to clearly show on the screen, and we need to
show only some part of the object.

https://www.pinterest.com

Window
The capability that show some part of object internal a specify window
is called windowing

Rectangular region in a world coordinate system is called window

– This is the coordinate system used to locate an object in the
natural world

– The world coordinate system does not depend on a display
device

Window

Viewport

A Viewport is the section of the screen where the images covered by the
window on the world coordinate system will be drawn.

The viewport uses the screen coordinate system so this transformation is from
the world coordinate system to the screen coordinate system (Mapping).

Screen

Viewport

2D Mapping

Yw-min

Xw-max

Yw-max

Xw-min

Xv-max

Yv-max

Xv-min

Yv-min

Window

Viewport

World Coordinates

Device Coordinates

2D Mapping

Mapping can be done by scaling the window
down to the viewport

Scaling factor Sx, Sy

2D Mapping

2D Mapping

2D Mapping Example

Xv = ?
Yv = ?

Clipping

When a window is "placed" on the world, only certain objects and parts of objects can
be seen. Points and lines which are outside the window are "cut off" from view.

This process of "cutting off" parts of the image of the world is called Clipping

In clipping, we examine each line to determine

– whether or not it is completely inside the window
– completely outside the window
– crosses a window boundary.

If inside the window, the line is displayed. If outside the window, the lines and points
are not displayed.

If a line crosses the boundary, we must determine the point of intersection and display
only the part which lies inside the window.

Point clipping

Line Clipping

Cohen-Sutherland Line Clipping
Each of the nine regions associated with the window is assigned a 4-bit code to
identify the region. Each bit in the code is set to either a 1(true) or a 0(false). If the
region is to the left of the window, the first bit of the code is set to 1. If the region is to
the top of the window, the second bit of the code is set to 1. If to the right, the third
bit is set, and if to the bottom, the fourth bit is set. The 4 bits in the code then identify
each of the nine regions as shown below.

Cohen-Sutherland Line Clipping

For any endpoint (x , y) of a line, the code can be determined
that identifies which region the endpoint lies. The code's bits are
set according to the following conditions:

The sequence for reading the codes' bits is LRBT (Left, Right, Bottom, Top).

Cohen-Sutherland Line Clipping

Once the codes for each endpoint of a line are determined, the logical
AND operation of the codes determines if the line is completely
outside of the window.

If the logical AND of the endpoint codes is not zero, the line can be
trivially rejected.
Ex:
if an endpoint had a code of 1001 while the other endpoint had a code
of 1010, the logical AND would be 1000 which indicates the line
segment lies outside of the window.

On the other hand, if the endpoints had codes of 1001 and 0110, the
logical AND would be 0000, and the line could not be trivially rejected.

Cohen-Sutherland Line Clipping

The logical OR of the endpoint codes determines if the line is
completely inside the window. If the logical OR is zero, the line
can be trivially accepted.

Ex:

If the endpoint codes are 0000 and 0000, the logical OR is 0000 -
the line can be trivially accepted.

If the endpoint codes are 0000 and 0110, the logical OR is 0110
and the line cannot be trivially accepted.

Cohen-Sutherland Line Clipping
Algorithm

The Cohen-Sutherland algorithm uses a divide-and-conquer strategy.

To perform the trivial acceptance and rejection tests, we extend the edges of the window to divide the plane of
the window into the nine regions. Each end point of the line segment is then assigned the code of the region in
which it lies.

• Given a line segment with endpoint P1 =(x1,y1) and P2 =(x2, y2)

• Compute the 4-bit codes for each endpoint.

– If both codes are 0000,(bitwise OR of the codes yields 0000) line lies completely inside the window:
pass the endpoints to the draw routine.

– If both codes have a 1 in the same bit position (bitwise AND of the codes is not 0000), the line lies
outside the window. It can be trivially rejected.

• If a line cannot be trivially accepted or rejected, at least one of the two endpoints must lie outside the
window and the line segment crosses a window edge. This line must be clipped at the window edge
before being passed to the drawing routine.

• Examine one of the endpoints, Read 's 4-bit code in order: Left-to-Right, Bottom-to-Top.

• When a set bit (1) is found, compute the intersection I of the corresponding window edge with the line
from P1 to P2 . Replace P1 with I and repeat the algorithm.

Liang-Barsky Line Clipping

The ideas for clipping line of Liang-Barsky and Cyrus-
Beck are the same

The only difference is Liang-Barsky algorithm has been
optimized for an upright rectangular clip window

Liang and Barsky have created an algorithm that uses
floating-point arithmetic but finds the appropriate end
points with at most four computations.

Liang-Barsky Line Clipping

Let P(x1,y1) , Q(x2,y2) be the line which we want to study.

and

Liang-Barsky Line Clipping

Liang-Barsky Line Clipping Algorithm

Liang-Barsky Line Clipping Algorithm

Liang-Barsky Line Clipping Algorithm

Sutherland - Hodgman Polygon
Clipping

The Sutherland - Hodgman algorithm performs a clipping of a
polygon against each window edge in turn. It accepts an ordered
sequence of verices v1, v2, v3, ..., vn and puts out a set of vertices
defining the clipped polygon.

Sutherland - Hodgman Polygon
Clipping

a. Clipping against the left side of the clip window.

b. Clipping against the top side of the clip window.

c. Clipping against the right side of the clip window.

d. Clipping against the bottom side of the clip window.

As the algorithm goes around the edges of the window, clipping
the polygon, it encounters four types of edges.

Sutherland - Hodgman Polygon
Clipping

For each edge type, zero, one, or two vertices are added to the
output list of vertices that define the clipped polygon.

The four types of edges are:
1. Edges that are totally inside the clip window. - add the second inside vertex point
2. Edges that are leaving the clip window. - add the intersection point as a vertex
3. Edges that are entirely outside the clip window. - add nothing to the vertex output list
4. Edges that are entering the clip window. - save the intersection and inside points as
vertices

How To Calculate Intersections
Assume that we're clipping a polgon's edge with vertices at (x1,y1) and (x2,y2) against a clip
window with vertices at (xmin, ymin) and (xmax,ymax).

The location (IX, IY) of the intersection of the edge with the left side of the window is:

 i. IX = xmin

 ii. IY = slope*(xmin-x1) + y1, where the slope = (y2-y1)/(x2-x1)

The location of the intersection of the edge with the right side of the window is:

 i. IX = xmax

 ii. IY = slope*(xmax-x1) + y1, where the slope = (y2-y1)/(x2-x1)

The intersection of the polygon's edge with the top side of the window is:

 i. IX = x1 + (ymax - y1) / slope

 ii. IY = ymax

Finally, the intersection of the edge with the bottom side of the window is:

 i. IX = x1 + (ymin - y1) / slope

 ii. IY = ymin

Sutherland - Hodgman Polygon
Clipping Problems

Some Problems With This Algorithm

1. This algorithm does not work if the clip window is not
convex.

2. If the polygon is not also convex, there may be some dangling
edges.

