
Computer Graphics 

Lecture 07 



OpenGL Introduction 

The most essential aspect of OpenGL is the vertex pipeline described in 
Chapter 3 of the Redbook. Objects are represented by a set of vertices in user 
deffined object coordinates, and these vertices are converted to window 
coordinates by a sequence of four transformations (state information). The 
primary goal of this course is to convey an understanding of these 
transformations. 
 
The transformations of interest in graphics are linear transformations (scaling, 
rotation, refflection, shear, and orthographic projection), affine 
transformations (linear transformations, along with translation), and 
projective transformations (central projection). These transformations can be 
understood at three levels. 
 
• The visual aspect of the geometry 
• The algebraic matrix representation and operations 
• The internal workings of the vertex pipeline 



OpenGL Vertex Pipeline 

The focus of these notes is on the vertex pipeline: 
 

 

 

 

 

 

 

 

 

 

Object Coordinates 
[Model view Matrix]  

 

Eye Coordinates 
 [Project Matrix]  

 

Clip Coordinates 
 [Perspective Division]  

 

Normalized Device Coordinates   
[Viewport Transformation]  

 

Window Coordinates and Depths 
 



Modelview Matrix 
The modelview matrix represents a sequence of modeling transformations followed by a 
sequence of viewing transformations.  

 

The modeling transformations typically include scaling, rotation, and translation. 

 

 A tricycle might be rendered by drawing a wheel (perhaps stored as a display list) three times 
with different scaling and translations.  

 

The parts of a robot arm might be constructed by scaling, rotating, and translating an axis-aligned 
cube centered at the origin. 

 

In a 2-D application no viewing transformations are necessary.  

In a 3-D application with perspective projection, the eye position is  

at the origin, the viewing direction is the -z direction, and the  

projection plane is parallel to the x-y plane.  

Only vertices with negative z components will be  visible. A typical  

viewing transformation therefore includes at least a translation in the negative z direction. 

 



Rotation and Translation 

We will use a right-handed coordinate system 



OpenGL Code 

Consider the following code sequence, which draws a single 
point using three transformations 
 
glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
glMultMatrixf(N);                /* apply transformation N */ 
glMultMatrixf(M);               /* apply transformation M */ 
glMultMatrixf(L);                /* apply transformation L */ 
 
glBegin(GL_POINTS); 
glVertex3f(v);                     /* draw transformed vertex v */ 
glEnd(); 



The Camera Analogy 

Set up your tripod and pointing the camera at the scene   

 viewing transformation 

 

 

 

Arrange the scene to be photographed into the desired 
composition 

  modeling transformation 

 

 

 

 



The Camera Analogy 

Choose a camera lens or adjust the zoom  

 projection transformation 

 

 

 

 

Determine how large you want the final photograph to be ex:  Enlarged 

 viewport transformation 

 



Viewing Transformations 

A viewing transformation changes the position and orientation of the 
viewpoint 

Ex: positions the camera tripod, pointing the camera toward the model 

viewing transformations are generally composed of translations and 
rotations. 

you can either move the camera or move all the objects in the opposite 
direction. 

 

There are 3 ways of doing this 

1. Use one or more modeling transformation commands (that is, 
glTranslate*() and glRotate*()) 

2. Use the Utility Library routine gluLookAt() to define a line of sight 

3. Create your own utility routine that encapsulates rotations and 
translations 



Using glTranslate*() and glRotate*() 

glTranslatef(0.0, 0.0, -5.0); 

 

This routine moves the objects in the scene -5 units along the z axis. This is also 
equivalent to moving the camera +5 units along the z axis. 

 



Using the gluLookAt() Utility Routine 

The gluLookAt() routine is particularly useful when you 
want to pan across a landscape 
 
With a viewing volume that's symmetric in both x and y, 
the (eyex, eyey, eyez) point specified is always in the 
center of the image on the screen, so you can use a series 
of commands to move this point slightly, thereby panning 
across the scene. 
 
void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, 
GLdouble centerx, GLdouble centery, GLdouble centerz, GLdouble upx, 
GLdouble upy, Gldouble upz); 
 
 



gluLookAt() Example 

gluLookat (0.0, 0.0, 0.0, 0.0, 0.0, -100.0, 0.0, 1.0, 0.0);   

Default Camera Position 



gluLookAt() Example 

The camera position (eyex, eyey, eyez) is at (4, 2, 1). In this case, the camera is 
looking right at the model, so the reference point is at (2, 4, -3). An 
orientation vector of (2, 2, -1) is chosen to rotate the viewpoint to this 45-
degree angle. 

gluLookAt(4.0, 2.0, 1.0, 2.0, 4.0, -3.0, 2.0, 2.0, -1.0);  



Projection Matrix 

The projection plane is the near plane defined by z=-n for n > 0. There are two 
types of projection. 

 

Orthogonal projection or (parallel) orthographic projection maps a point p to 
the nearest point in the projection plane by simply setting the z component 
to -n. 

 



Orthogonal projection  

Useful for CAD and architectural drawing 



Orthographic Projection by glOrtho 

Demonstrates that orthographic projection preserves relative sizes. 



Perspective projection  

Perspective projection involves central projection through the origin 
(the center of projection). A point p is mapped to the point of 
intersection of the line defined by p and the origin with the projection 
plane. 
 
Perspective projection results in perspective foreshortening in which 
more distant lines project to shorter lines.  
 
Orthographic projection may be thought of as the limit of perspective 
projection as the eye position is moved to (0; 0;1).  
 
This is inappropriate for rendering real (or realistic appearing) objects, 
but is cheaper and has the advantage that relative lengths are 
preserved:  
 
 



Perspective Projection by glFrustum 

Depicts the six planes 
defining a frustum view 
volume 



Perspective Projection by 
gluPerspective 

gluPerspective(fovy, aspect, near, far).  
The aspect ratio is w/h. 



Include Files 

#include <stlib.h> 

#include <GL/glut.h> (This includes gl.h and glu.h) 

#include <stdio.h> (if using C I/O) 

#include <math.h> (if using C math library) 

 

For portability, replace the second statement by the following: 

#ifdef __APPLE__ 

#include <GLUT/glut.h> 

#else 

#include <GL/glut.h> 

#endif 

 


