Computer Graphics

Lecture 04

Certain Special Vectors

In $\mathbf{R}^{\mathbf{2}}$, any vector $\left[\begin{array}{ll}a & b\end{array}\right]^{\mathbf{T}}$ can be expressed in the form

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=a\left[\begin{array}{l}
1 \\
0
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1
\end{array}\right] ;
$$

In general, in R^{n}, the name e_{i} refers to a vector whose entries are zeroes, except the $i^{\text {th }}$, which is 1

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \text { and } \quad \mathbf{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Length of a Vector

The length (or norm) of the vector \mathbf{v}, denoted $\|\mathbf{v}\|$, is the square root of the sum of the squares of the entries of \mathbf{v}. If $\mathbf{v}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{\mathrm{T}}$, then $\|\mathbf{v}\|=\sqrt{1^{2}+2^{2}+3^{2}}=$ $\sqrt{14}$. This corresponds, when we think of \mathbf{v} as a displacement, to the distance that we moved. A vector whose length is 1 is called a unit vector.

You can convert a nonzero vector \mathbf{v} to a unit vector, which is called normalizing it, by dividing it by its length. We write

$$
\mathcal{S}(\mathbf{v})=\mathbf{v} /\|\mathbf{v}\|
$$

Dot Product

dot product of two n-vectors v and w, defined by
$\mathbf{v} \cdot \mathbf{w}=v_{1} w_{1}+v_{2} w_{2}+\ldots+v_{n} w_{n}$.

This is sometimes denoted $\langle v, w\rangle$; in this form, it's usually called the inner product. The dot product is used for measuring angles. If v and w are unit vectors, then
$\mathbf{v} \cdot \mathbf{w}=\cos (\theta), \quad$ where θ is the angle between the vectors

This is most often used in the form

$$
\theta=\cos ^{-1} \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}
$$

Dot Product

For a Euclidean space we may also compute the dot product of two vectors \mathbf{u} and \mathbf{v}. The dot product is denoted $\mathbf{u} \cdot \mathbf{v}$, and its definition is shown below:

$$
\mathbf{u} \cdot \mathbf{v}=\sum_{i=0}^{n-1} u_{i} v_{i} \quad \text { (dot product) }
$$

For the dot product we have the rules:
(i) $\mathbf{u} \cdot \mathbf{u} \geq 0$, with $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=(0,0, \ldots, 0)=0$
(ii) $(\mathbf{u}+\mathrm{v}) \cdot \mathbf{w}=\mathrm{u} \cdot \mathbf{w}+\mathrm{v} \cdot \mathrm{w}$
(iii) $(a \mathbf{u}) \cdot \mathbf{v}=a(\mathbf{u} \cdot \mathbf{v})$
(iv) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
(commutativity)
(v) $\mathbf{u} \cdot \mathbf{v}=0 \Longleftrightarrow \mathbf{u} \perp \mathbf{v}$.

Dot Product

if the dot product is zero then the vectors are orthogonal (perpendicular).

The norm of a vector, denoted $\|\mathbf{u}\|$, is a nonnegative number that can be expressed using the dot product:

$$
\begin{equation*}
\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}=\sqrt{\left(\sum_{i=0}^{n-1} u_{i}^{2}\right)} \tag{norm}
\end{equation*}
$$

Cross Product

The cross product is usually defined for pairs of vectors in 3space as follows:

$$
\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right] \times\left[\begin{array}{l}
w_{x} \\
w_{y} \\
w_{z}
\end{array}\right]=\left[\begin{array}{l}
v_{y} w_{z}-v_{z} w_{y} \\
v_{z} w_{x}-v_{x} w_{z} \\
v_{x} w_{y}-v_{y} w_{x}
\end{array}\right]
$$

The cross product is anticommutative that is, $\mathbf{v} \times \mathbf{w}=-\mathbf{w} \times \mathbf{v}$

Cross Product

One of the main uses of the cross product is that

$$
\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\||\sin \theta|
$$

where θ is the angle between v and w.

That means that half the length of the cross product is the area of the triangle with vertices $(0,0,0),\left(v_{x}, v_{y}, v_{z}\right)$, and ($\left.w_{x}, w_{y}, w_{z}\right)$.

Cross Product

$\|\mathbf{w}\|=\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \phi$, where φ is the smallest angle between \mathbf{u} and \mathbf{v}

$\mathbf{w} \perp \mathbf{u}$ and $\mathbf{w} \perp \mathbf{v}$
$\mathbf{u}, \mathbf{v}, \mathbf{w}$ form a right-handed system
$u \times v=0$ if and only if $u \| v$
(i.e., u and v are parallel), since then $\sin \phi=0$

Cross Product

$$
\begin{array}{ll}
\mathbf{u} \times \mathbf{v}=-\mathbf{v} \times \mathbf{u} & \text { (anti-commutativity) } \\
\left.\begin{array}{l}
(a \mathbf{u}+b \mathbf{v}) \times \mathbf{w}=a(\mathbf{u} \times \mathbf{w})+b(\mathbf{v} \times \mathbf{w}) \\
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u} \\
=(\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}=-(\mathbf{v} \times \mathbf{u}) \cdot \mathbf{w} \\
=-(\mathbf{u} \times \mathbf{w}) \cdot \mathbf{v}=-(\mathbf{w} \times \mathbf{v}) \cdot \mathbf{u}
\end{array}\right\} & \text { (scalar triple product) } \\
\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w} & \text { (vector triple product) }
\end{array}
$$

Matrices

A matrix, \mathbf{M}, can be used as a tool for manipulating vectors and points.
\mathbf{M} is described by $p \times q$ scalars where $m_{i j}, 0 \leq i \leq p-1$,
$0 \leq j \leq q-1$, with p rows and q columns
$\mathbf{M}=\left(\begin{array}{cccc}m_{00} & m_{01} & \cdots & m_{0, q-1} \\ m_{10} & m_{11} & \cdots & m_{1, q-1} \\ \vdots & \vdots & \ddots & \vdots \\ m_{p-1,0} & m_{p-1,1} & \cdots & m_{p-1, q-1}\end{array}\right)=\left[m_{i j}\right]$

Identity Matrix

Matrix called the unit matrix, \mathbf{I}, which is square and contains ones in the diagonal and zeros elsewhere.

$$
\mathbf{I}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

When \boldsymbol{A} is $m \times n$, it is a property of matrix multiplication that $I_{m} A=A I_{n}=A$

Matrix-Matrix Addition

Adding two matrices, say M and N , is possible only for equalsized matrices and is defined as

$$
\mathbf{M}+\mathbf{N}=\left[m_{i j}\right]+\left[n_{i j}\right]=\left[m_{i j}+n_{i j}\right]
$$

This is, componentwise addition, very similar to vector-vector addition.

Scalar-Matrix Multiplication

A scalar a and a matrix, \mathbf{M}, can be multiplied to form a new matrix of the same size as \mathbf{M}, which is
$a \mathbf{M}=\left[a m_{i j}\right]$

Rules:

i) $0 M=0$
ii) $1 M=M$
iii) $a(b M)=(a b) M$
iv) $(a+b) \mathbf{M}=a \mathbf{M}+b \mathbf{M}$
v) $a(\mathbf{M}+\mathbf{N})=a \mathbf{M}+a \mathbf{N}$

Transpose of a Matrix

M^{\top} is the notation for the transpose of $M=\left[m_{i j}\right]$, and the definition is $\mathrm{M}^{\top}=\left[\mathrm{m}_{\mathrm{ji}}\right]$
The columns become rows and the rows become columns. Rules:
i) $(\mathrm{aM})^{\top}=a \mathbf{M}^{\top}$
ii) $(\mathbf{M}+\mathbf{N})^{T}=\mathbf{M}^{T}+\mathbf{N}^{T}$
iii) $\left(\mathbf{M}^{T}\right)^{T}=\mathbf{M}$
iv) $(\mathbf{M N})^{\top}=\mathbf{N}^{\top} \mathbf{M}^{\top}$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 2
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]}
\end{aligned}
$$

Trace of a Matrix

The trace of a matrix, denoted $\operatorname{tr}(\mathrm{M})$, is simply the sum of the diagonal elements of a square matrix

$$
\operatorname{tr}(\mathbf{M})=\sum_{i=0}^{n-1} m_{i i}
$$

For square matrices A and B, it is true that

$$
\begin{array}{ll}
\operatorname{Tr}(\mathrm{A}) & =\operatorname{Tr}\left(\mathrm{A}^{\top}\right) \\
\operatorname{Tr}(\mathrm{A}+\mathrm{B}) & =\operatorname{Tr}(\mathrm{A})+\operatorname{Tr}(\mathrm{B}) \\
\operatorname{Tr}(\mathrm{aA}) & =\mathrm{a} \operatorname{Tr}(\mathrm{~A})
\end{array}
$$

Matrix Multiplication

This operation, denoted MN between M and N , is defined only if M is of size $p \times q$ and N is of size $q \times r$, in which case the result, T, becomes a $p \times r$ sized matrix. Mathematically, for these matrices the operation is as follows:

$$
\begin{aligned}
\mathbf{T}=\mathbf{M N} & =\left(\begin{array}{ccc}
m_{00} & \cdots & m_{0, q-1} \\
\vdots & \ddots & \vdots \\
m_{p-1,0} & \cdots & m_{p-1, q-1}
\end{array}\right)\left(\begin{array}{ccc}
n_{00} & \cdots & n_{0, r-1} \\
\vdots & \ddots & \vdots \\
n_{q-1,0} & \cdots & n_{q-1, r-1}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\sum_{i=0}^{q-1} m_{0, i} n_{i, 0} & \cdots & \sum_{i=0}^{q-1} m_{0, i} n_{i, r-1} \\
\vdots & \ddots & \vdots \\
\sum_{i=0}^{q-1} m_{p-1, i} n_{i, 0} & \cdots & \sum_{i=0}^{q-1} m_{p-1, i} n_{i, r-1}
\end{array}\right)
\end{aligned}
$$

In other words, each row of M and column of N are combined using a dot product, and the result placed in the corresponding row and column element.

Matrix Multiplication

Rules:

i) $\quad(\mathrm{LM}) \mathrm{N}=\mathrm{L}(\mathrm{MN})$,
ii) $(L+M) N=L N+M N$,
iii) $\mathrm{MI}=\mathrm{IM}=\mathrm{M}$

If the dimensions of the matrices are the same, then $M N \neq N M$

Determinant of a Matrix

The determinant is defined only for square matrices. The determinant of \mathbf{M}, written |M|

$$
\begin{aligned}
|\mathbf{M}|= & \left|\begin{array}{ll}
m_{00} & m_{01} \\
m_{10} & m_{11}
\end{array}\right|=m_{00} m_{11}-m_{01} m_{10} \\
|\mathbf{M}|= & \left|\begin{array}{lll}
m_{00} & m_{01} & m_{02} \\
m_{10} & m_{11} & m_{12} \\
m_{20} & m_{21} & m_{22}
\end{array}\right| \\
= & m_{00} m_{11} m_{22}+m_{01} m_{12} m_{20}+m_{02} m_{10} m_{21} \\
& -m_{02} m_{11} m_{20}-m_{01} m_{10} m_{22}-m_{00} m_{12} m_{21}
\end{aligned}
$$

If $n \times n$ is the size of M, then the following apply to determinant calculations:
i) $\left|\mathrm{M}^{-1}\right|=1 /|\mathrm{M}|$
ii) $|M N|=|M||N|$
iii) $|a M|=a^{n}|M|$,
iv) $|\mathrm{MT}|=|\mathrm{M}|$

Determinant of a Matrix

The orientation of a basis can be determined via determinants. A basis is said to form a right-handed system, also called a positively oriented basis, if its determinant is positive. The standard basis has this property, since $\left\lvert\, \begin{array}{lll}\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \mid=\left(\mathbf{e}_{x} \times \mathbf{e}_{y}\right) \cdot \mathbf{e}_{z}=(0,0,1) \cdot \mathbf{e}_{z}=\mathbf{e}_{z} \cdot \mathbf{e}_{z}=1>0 \text {. If the }\end{array}\right.$ determinant is negative, the basis is called negatively oriented or is said to be forming a left-handed system.

Thumb indicates the positive direction of x index indicates the positive direction of y
middle finger pointing out indicates the positive direction of z

