Computer Graphics

Lecture 03

Linear Algebra

Euclidean Space

The n-dimensional real Euclidean space is denoted \mathbb{R}^{n} A vector \boldsymbol{v} in this space is an n-tuple, that is, an ordered list of real numbers:

$$
\mathbf{v} \in \mathbb{R}^{n} \Longleftrightarrow \mathbf{v}=\left(\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{n-1}
\end{array}\right) \text { with } v_{i} \in \mathbb{R}, i=0, \ldots, n-1
$$

Vector

Ex:

The vector OP has initial point at the origin O $(0,0,0)$ and terminal point at $P(2,3,5)$. We can draw the vector OP as follows:

$$
\mathbf{v}=\left(v_{0}, v_{1}, v_{2}\right)^{\top} \in R^{3}
$$

Vector Operations

For vectors in a Euclidean space there exist two operators, addition and multiplication by a scalar

$$
\begin{aligned}
& \mathbf{u}+\mathbf{v}=\left(\begin{array}{c}
u_{0} \\
u_{1} \\
\vdots \\
u_{n-1}
\end{array}\right)+\left(\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{n-1}
\end{array}\right)=\left(\begin{array}{c}
u_{0}+v_{0} \\
u_{1}+v_{1} \\
\vdots \\
u_{n-1}+v_{n-1}
\end{array}\right) \in \mathbb{R}^{n} \quad \text { (addition) } \\
& a \mathbf{u}=\left(\begin{array}{c}
a u_{0} \\
a u_{1} \\
\vdots \\
a u_{n-1}
\end{array}\right) \in \mathbb{R}^{n}
\end{aligned}
$$

The " $\in R^{n}$ " simply means that addition and multiplication by ' a ' scalar yields vectors of the same space.

Euclidean space

Addition of vectors in a Euclidean

* $(u+v)+w=u+(v+w)$
* $u+v=v+u$
(associativity)
(commutativity)

In case of zero vector where $0=(0,0, \ldots . .0)$ with n zeros

* $0+\mathrm{v}=\mathrm{v}$ (zero identity)

In case of $-v$ vector where $-\mathbf{v}=\left(-v_{0},-v_{1}, \ldots,-v_{n-1}\right)$

* $v+(-v)=0$ (additive inverse)

Euclidean space

Vector multiplication by a scalar in a Euclidean

* (ab) u = a $b \mathrm{bu}$)
* $(a+b) \mathrm{u}=a \mathrm{u}+b \mathrm{u}$ (distributive law)
* $a(u+v)=a u+a v \quad$ (distributive law)
* $1 u=u$

Trigonometry

In an Euclidean space where $\mathbf{p}=(p x, p y)$ is a unit vector, such that $\|\mathbf{p}\|=1$,
the fundamental trigonometric functions, sin, cos, and tan, are defined by

Fundamental trigonometric functions :
$\sin \phi=p_{y}$
$\cos \phi=p_{x}$
$\tan \phi=\frac{\sin \phi}{\cos \phi}=\frac{p_{y}}{p_{x}}$

Trigonometry Fundamentals

Figure B.1. The geometry for the definition of the \sin , \cos, and tan functions is shown to the left. The right-hand part of the figure shows $p_{x}=\cos \phi$ and $p_{y}=\sin \phi$, which together traces out the circle.

MacLaurin Series

The sin, cos, and tan functions can be expanded into MacLaurin series MacLaurin series:
$\sin \phi=\phi-\frac{\phi^{3}}{3!}+\frac{\phi^{5}}{5!}-\frac{\phi^{7}}{7!}+\cdots+(-1)^{n} \frac{\phi^{2 n+1}}{(2 n+1)!}+\cdots \quad$ hold for $-\infty<\phi<\infty$
$\cos \phi=1-\frac{\phi^{2}}{2!}+\frac{\phi^{4}}{4!}-\frac{\phi^{6}}{6!}+\cdots+(-1)^{n} \frac{\phi^{2 n}}{(2 n)!}+\cdots \quad$ hold for $-\infty<\phi<\infty$
$\tan \phi=\phi+\frac{\phi^{3}}{3}+\frac{2 \phi^{5}}{15}+\cdots+(-1)^{n-1} \frac{2^{2 n}\left(2^{2 n}-1\right)}{(2 n)!} B_{2 n} \phi^{2 n-1}+\ldots$ hold for $-\pi / 2<\varphi<\pi / 2$

Where B_{n} is the $\mathrm{n}^{\text {th }}$ Bernoulli number that can be generated with a recursive formula, where $\mathrm{B}_{0}=1$ and then for $k>1, \sum_{j=0}^{k-1}\binom{k}{j} B_{j}=0$

Pythagorean relation

Trigonometric identity $\quad \cos ^{2} \phi+\sin ^{2} \phi=1$

$$
c^{2}=a^{2}+b^{2}
$$

Trigonometry Revised

Right triangle laws :

$\sin \alpha=\frac{a}{c}$
$\cos \alpha=\frac{b}{c}$
$\tan \alpha=\frac{\sin \alpha}{\cos \alpha}=\frac{a}{b}$
well-known rules are

$$
\begin{aligned}
\text { Law of sines : } & \frac{\sin \alpha}{a}=\frac{\sin \beta}{b}=\frac{\sin \gamma}{c} \\
\text { Law of cosines : } & c^{2}=a^{2}+b^{2}-2 a b \cos \gamma \\
\text { Law of tangents : } & \frac{a+b}{a-b}=\frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}
\end{aligned}
$$

Arbitrarily Angled Triangles

Named after their inventors, the following two formulas are also valid for arbitrarily angled triangles.

$$
\begin{array}{r}
\text { Newton's formula : } \frac{b+c}{a}=\frac{\cos \frac{\beta-\gamma}{2}}{\sin \frac{\alpha}{2}} \\
\text { Mollweide's formula : } \frac{b-c}{a}=\frac{\sin \frac{\beta-\gamma}{2}}{\cos \frac{\alpha}{2}}
\end{array}
$$

An arbitrarily angled triangle and its notation.

Angle Relations

Angle sum relations

$\sin (\phi+\rho)=\sin \phi \cos \rho+\cos \phi \sin \rho$
$\cos (\phi+\rho)=\cos \phi \cos \rho-\sin \phi \sin \rho$
$\tan (\phi+\rho)=\frac{\tan \phi+\tan \rho}{1-\tan \phi \tan \rho}$

Angle difference relations

$\sin (\phi-\rho)=\sin \phi \cos \rho-\cos \phi \sin \rho$
$\cos (\phi-\rho)=\cos \phi \cos \rho+\sin \phi \sin \rho$
$\tan (\phi-\rho)=\frac{\tan \phi-\tan \rho}{1+\tan \phi \tan \rho}$

Angle Relations

Double angle relations

$$
\begin{aligned}
& \sin 2 \phi=2 \sin \phi \cos \phi=\frac{2 \tan \phi}{1+\tan ^{2} \phi} \\
& \cos 2 \phi=\cos ^{2} \phi-\sin ^{2} \phi=1-2 \sin ^{2} \phi=2 \cos ^{2} \phi-1=\frac{1-\tan ^{2} \phi}{1+\tan ^{2} \phi} \\
& \tan 2 \phi=\frac{2 \tan \phi}{1-\tan ^{2} \phi}
\end{aligned}
$$

Angle Relations

Multiple angle relations

$$
\begin{aligned}
\sin (n \phi) & =2 \sin ((n-1) \phi) \cos \phi-\sin ((n-2) \phi) \\
\cos (n \phi) & =2 \cos ((n-1) \phi) \cos \phi-\cos ((n-2) \phi) \\
\tan (n \phi) & =\frac{\tan ((n-1) \phi)+\tan \phi}{1-\tan ((n-1) \phi) \tan \phi}
\end{aligned}
$$

Angle Relations

Half-angle relations

$$
\begin{aligned}
& \sin \frac{\phi}{2}= \pm \sqrt{\frac{1-\cos \phi}{2}} \\
& \cos \frac{\phi}{2}= \pm \sqrt{\frac{1+\cos \phi}{2}} \\
& \tan \frac{\phi}{2}= \pm \sqrt{\frac{1-\cos \phi}{1+\cos \phi}}=\frac{1-\cos \phi}{\sin \phi}=\frac{\sin \phi}{1+\cos \phi}
\end{aligned}
$$

Angle Relations

Function sums and differences

$$
\begin{aligned}
& \sin \phi+\sin \rho=2 \sin \frac{\phi+\rho}{2} \cos \frac{\phi-\rho}{2} \\
& \cos \phi+\cos \rho=2 \cos \frac{\phi+\rho}{2} \cos \frac{\phi-\rho}{2} \\
& \tan \phi+\tan \rho=\frac{\sin (\phi+\rho)}{\cos \phi \cos \rho} \\
& \sin \phi-\sin \rho=2 \cos \frac{\phi+\rho}{2} \sin \frac{\phi-\rho}{2} \\
& \cos \phi-\cos \rho=-2 \sin \frac{\phi+\rho}{2} \sin \frac{\phi-\rho}{2} \\
& \tan \phi-\tan \rho=\frac{\sin (\phi-\rho)}{\cos \phi \cos \rho}
\end{aligned}
$$

