
Computer Graphics

CSCI 272

California State University, Fresno

Who am I

• Dhanyu Amarasinghe

• Visiting Professor in Computer Graphics

• Ph.D. in Computer Science

at University of North Texas, 2013

• Field of expertise in Gaming,
Graphics & GPGPU

• Member of Larc

(Laboratory for Recreational Computing)

• Lead Tech at Apple inc. 2013 - 2015

http://larc.unt.edu/

Contact Infomation

• Office: Science 2, Room 249

• Email: dhanyu@csufresno.edu

• Office hours:

– See the Syllabus

mailto:dhanyu@csufresno.edu

About this Course

• Linear Algebra and Trigonometry

• C/C++-programming

• Syllabus

csci272-Fall2018Syll.pdf

Introduction

Computer Graphics is a subfield of computer science
concerned with the creation and manipulation of images. It
differs from image processing in that the emphasis is on image
generation.

Modern graphics APIs include OpenGL, Direct3D, Java3D,
Matlab, and others. Our programming environment will
include C or C++, OpenGL, and GLUT (system-independent
interface to OpenGL) on a workstation or laptop computer
running Windows, Linux, or OS X. Graphics lends itself well to
object-oriented programming, but since OpenGL is not object
oriented, and we do not want to hide low level details,
procedural code is preferred.

About Computer Graphics

The study of computer graphics can be
partitioned into three subfields.

– Modeling: Mathematical specification of shape
and appearance, such as a triangle mesh surface
and reflection model.

– Rendering: Creation of shaded images from 3-D
computer models.

– Animation: A technique to create the illusion of
motion by time-sequencing rendered images.

Modeling

12,000 – 15,000 Wireframe of Triangles

3D Model with Triangles

Rendering

Proper lighting and
Texture provide our
Mesh model a fine realistic outlook.

Images from www.baypins.com

Animation

www.mdl3d.com

http://www.mdl3d.com/

Related Fields

Related fields include the following.

User Interaction Interface between user input devices and an
application program.

Virtual Reality Attempt to immerse the user in a 3-D virtual
world using stereo graphics, response to head
motion, sound, haptics (force feedback), etc.

Visualization Provide insight into data via visual display.
Image Processing Manipulation of 2-D images.
3-D Scanning Use of range-finding to create 3-D models.

Applications

• Video games: simulations without the need for high accuracy.
• Movie special effects such as digital compositing (superimposed

backgrounds with separately filmed foregrounds) or computer-generated
foregrounds. The first full-length computer-generated film was Toy Story in
1994.

• CAD/CAM (Computer-aided Design/Manufacturing) mechanical parts and
products are designed by a 3-D modeling package and produced by a
computer controlled milling machine.

• Simulation
• Medical imaging creation of shaded images from scanned patient data
• Visualization
• Paint programs, Art
• Word processing and desktop publishing
• Business graphics: graphs and charts
• GUI's

Graphic Pipeline Overview

The basic construction of the rendering pipeline, consisting of three
stages: application, geometry, and the rasterizer. Each of these stages
may be a pipeline in itself, as illustrated below the geometry stage, or
a stage may be (partly) parallelized, as shown below the rasterizer
stage. In this illustration, the application stage is a single process, but
this stage could also be pipelined or parallelized.

Application Stage

• The developer has full control over what
happens in the application stage.

• A consequence of the software-based
implementation of this stage is that it is not
divided into substages

• In order to increase performance, this stage is
often executed in parallel on several processor
cores.

Geometry Stage

• The geometry stage is responsible for the
majority of the per-polygon and per-vertex
operations.

The geometry stage subdivided into a pipeline of functional stages.

Rasterizer Stage

The rasterizer stage subdivided into a pipeline
of functional stages.

Triangle Setup

In this stage the differentials and other data for the triangle’s surface are
computed. This data is used for scan conversion, as well as for interpolation of
the various shading data produced by the geometry stage. This process is
performed by fixed-operation hardware dedicated to this task.

Rasterizer Stage

Triangle Traversal
Here is where each pixel that has its center (or a sample) covered by the triangle is checked
and a fragment generated for the part of the pixel thatoverlaps the triangle. Finding which
samples or pixels are inside a triangle is often called triangle traversal or scan conversion.
Each triangle fragment’s properties are generated using data interpolated among the three
triangle vertices.

Pixel Shading
Any per-pixel shading computations are performed here, using the interpolated shading
data as input. The pixel shading stage is executed by programmable GPU cores. A large
variety of techniques can be employed here, one of the most important of which is
texturing.

Merging
The information for each pixel is stored in the color buffer, which is a rectangular array of
colors (a red, a green, and a blue component for each color). It is the responsibility of the
merging stage to combine the fragment color produced by the shading stage with the color
currently stored in the buffer.

