COMPUTER GRAPHICS

CSCI 173
California State University, Fresno

MODELVIEW Matrix Modes

- glMatrixMode(GL_MODELVIEW);
- glMatrixMode(GL_PROJECTION);
- glLoadldentity() - gILoadldentity replaces the current matrix with the identity matrix
- The Model, View and Projection matrices

The Model Matrix

- The X, Y, Z coordinates of a mesh are defined relative to the object's center

The Model Matrix

- Objects must move on the stage relative to one pivot point

We must connect Model Space (all vertices defined relatively to the center of the model)

To

World Space (all vertices defined relatively to the center of the world).

The Model matrix

- Model Coordinates

- World Coordinates

The View matrix

- The ship stays where it is and the engines move the universe around it.

It you want to view a mountain from another angle, you can either

1. Move the camera
2. Move the mountain

The View matrix

- So initially your camera is at the origin of the World Space. In order to move the world, you simply introduce another matrix
- Model Coordinates
[Model Matrix]
- World Coordinates
[Model Matrix]
- Camera Coordinates

The Projection matrix

- In order to represent realistic depth we may apply perspective projection

The Projection matrix

- Model Coordinates
[Model Matrix]
- World Coordinates
[View Matrix]
- Camera Coordinates
[Projection Matrix]

- Homogenous Coordinates

Final Results

Model Matrix Examples

Translation:

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & T_{x} \\
0 & 1 & 0 & T_{y} \\
0 & 0 & 1 & T_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotation:

$$
R_{x}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos (\alpha) & -\sin (\alpha) & 0 \\
0 & \sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 0 & 1
\end{array}\right], R_{y}=\left[\begin{array}{cccc}
\cos (\alpha) & 0 & \sin (\alpha) & 0 \\
0 & 1 & 0 & 0 \\
-\sin (\alpha) & 0 & \cos (\alpha) & 0 \\
0 & 0 & 0 & 1
\end{array}\right], R_{z}=\left[\begin{array}{cccc}
\cos (\alpha) & -\sin (\alpha) & 0 & 0 \\
\sin (\alpha) & \cos (\alpha) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Model Matrix Examples

Scaling:

$$
S=\left[\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The view matrix Example

- view matrix that simulates a moving camera, usually named lookAt.
- The eye, or the position of the viewer
- The center, or the point where we the camera aims
- The up, which defines the direction of the up for the viewer
- defaults in OpenGL are
- eye at ($0,0,-1$);
- center at ($0,0,0$);
- up at Oy axis (0, 1, 0)
- Results of the application will be

$$
v^{\prime}=V \cdot M \cdot v
$$

The Projection Matrix Examples

- The orthographic projection matrix:

$$
P=\left[\begin{array}{cccc}
\frac{2}{\text { right-left }} & 0 & 0 & -\frac{\text { right }+ \text { left }}{\text { right-left }} \\
0 & \frac{2}{\text { top-bottom }} & 0 & -\frac{\text { top }+ \text { bottom }}{\text { top }- \text { bottom }} \\
0 & 0 & -\frac{2}{\text { far-near }} & -\frac{\text { far }+ \text { near }}{\text { far-near }} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- The perspective projection matrix is:

$$
P=\left[\begin{array}{cccc}
\frac{2 \cdot n e a r}{\text { right-left }} & 0 & \frac{\text { right }+ \text { left }}{\text { right-left }} & 0 \\
0 & \frac{2 \cdot n e a r}{\text { top-bottom }} & \frac{\text { top }+ \text { bottom }}{\text { top-bottom }} & 0 \\
0 & 0 & -\frac{\text { far }+ \text { near }}{\text { far-near }} & -\frac{2 \cdot \text { far } \cdot \text { near }}{\text { far-near }} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

The Projection Matrix Examples

void glortho(GLdouble left,
GLdouble right, GLdouble bottom,
GLdouble top, GLdouble near Val, GLdouble farVal);
void glFrustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearVal, GLdouble farVal);

orthographic matrix

perspective matrix

The Projection Matrix Examples

gluPerspective(GLdouble fovy,
GLdouble aspect, GLdouble $z N e a r$, GLdouble $z F a r$);
set up a perspective projection matrix

$$
\begin{gathered}
\text { top }=\text { near } \cdot \tan \left(\frac{\pi}{180} \cdot F O V / 2\right) \\
\text { bottom }=- \text { top } \\
\text { right }=\text { top } \cdot \text { aspect } \\
\text { left }=- \text { right }
\end{gathered}
$$

Final output

$$
v^{\prime}=P \cdot V \cdot M \cdot v
$$

