COMPUTER GRAPHICS

CSCI 173

California State University, Fresno

MODELVIEW Matrix Modes

- glMatrixMode(GL_MODELVIEW);
- glMatrixMode(GL_PROJECTION);
- glLoadIdentity() glLoadIdentity replaces the current matrix with the identity matrix
- The Model, View and Projection matrices

The Model Matrix

 The X,Y,Z coordinates of a mesh are defined relative to the object's center

The Model Matrix

Objects must move on the stage relative to one pivot point

We must connect Model Space (all vertices defined relatively to the center of the model)

То

World Space (all vertices defined relatively to the center of the world).

The Model matrix

Model Coordinates

The View matrix

• The ship stays where it is and the engines move the universe around it.

It you want to view a mountain from another angle, you can either

- 1. Move the camera
- 2. Move the mountain

The View matrix

- So initially your camera is at the origin of the World Space. In order to move the world, you simply introduce another matrix
- Model Coordinates

[Model Matrix]

World Coordinates

[Model Matrix]

Camera Coordinates

The Projection matrix

 In order to represent realistic depth we may apply perspective projection

The Projection matrix

Model Coordinates

[Model Matrix]

World Coordinates

[View Matrix]

Camera Coordinates

[Projection Matrix]

Homogenous Coordinates

Final Results

Model Matrix Examples

Translation:

$$T = egin{bmatrix} 1 & 0 & 0 & T_x \ 0 & 1 & 0 & T_y \ 0 & 0 & 1 & T_z \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation:

$$R_x = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ R_y = \begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ R_z = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Model Matrix Examples

Scaling:

$$S = egin{bmatrix} S_x & 0 & 0 & 0 \ 0 & S_y & 0 & 0 \ 0 & 0 & S_z & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

The view matrix Example

- view matrix that simulates a moving camera, usually named lookAt.
 - The eye, or the position of the viewer
 - The *center*, or the point where we the camera aims
 - The *up*, which defines the direction of the up for the viewer
 - defaults in OpenGL are
 - eye at (0, 0, -1);
 - center at (0, 0, 0);
 - *up* at *Oy* axis (0, 1, 0)

Results of the application will be

$$v' = V \cdot M \cdot v$$

The Projection Matrix Examples

• The *orthographic* projection matrix:

$$P = egin{bmatrix} rac{2}{right-left} & 0 & 0 & -rac{right+left}{right-left} \ 0 & rac{2}{top-bottom} & 0 & -rac{top+bottom}{top-bottom} \ 0 & 0 & -rac{2}{far-near} & -rac{far+near}{far-near} \ 0 & 0 & 0 & 1 \ \end{bmatrix}$$

• The perspective projection matrix is:

$$P = egin{bmatrix} rac{2\cdot near}{right-left} & 0 & rac{right+left}{right-left} & 0 \ 0 & rac{2\cdot near}{top-bottom} & rac{top+bottom}{top-bottom} & 0 \ 0 & 0 & -rac{far+near}{far-near} & -rac{2\cdot far\cdot near}{far-near} \ 0 & 0 & -1 & 0 \ \end{bmatrix}$$

The Projection Matrix Examples

void glortho(GLdouble *left*, GLdouble *right*, GLdouble *bottom*, GLdouble *top*, GLdouble *nearVal*, GLdouble *farVal*);

orthographic matrix

void glFrustum(GLdouble *left*, GLdouble *right*, GLdouble *bottom*, GLdouble *top*, GLdouble *nearVal*, GLdouble *farVal*);

perspective matrix

The Projection Matrix Examples

gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble zNear, GLdouble zFar);

set up a perspective projection matrix

$$top = near \cdot anigg(rac{\pi}{180} \cdot FOV/2igg) \ bottom = -top \ right = top \cdot aspect \ left = -right$$

Final output

 $v' = P \cdot V \cdot M \cdot v$