COMPUTER GRAPHICS

CSCI 173
California State University, Fresno

D
What is the GPU Good at?

The GPU is good at data-parallel processing

- The same computation executed on many data
elements in parallel — low control flow overhead
with high SP floating point arithmetic
intensity

Many calculations per memory access

- Currently also need high floating point to integer
ratio

High floating-point arithmetic intensity and many data
elements mean that memory access latency can be
hidden with calculations instead of big data caches

L
General Purpose GPU

- General Purpose computation using GPU in applications
other than 3D graphics

- GPU accelerates critical path of application

- Data parallel algorithms leverage GPU attributes
- Large data arrays, streaming throughput
- Fine-grain SIMD parallelism
- Low-latency floating point (FP) computation

L
GPU Computing Development

Laptops, desktops, workstations, servers, clusters —
(cell phones? iPods?)

NVIDIA Volta VG100 GPU 2017
- Projected peak performance of 250 PFLOPS

D
GPU Architecture

- The GPU is specialized for compute-intensive,
massively data parallel computation (exactly what
graphics rendering is about)

So, more transistors can be devoted to data processing rather
than data caching and flow control

R - :
CUDA

- “Compute Unified Device Architecture”

- CUDA C extends C by allowing the programmer to define
C functions, called kernels

- Akernel is defined using the _ global

- The number of CUDA threads that execute that kernel for
a given kernel call is specified using a new <<<...>>>
execution configuration

Computational Example
- GPU on simple vector addition

// Kernel definition
__global void VecAdd(float* A, float* B, float* C)

{
int i = threadIdx.x;
C[i] = A[i] + B[i];
}
int main()
{

// Kernel invocation with N threads
VecAdd<<<l, N>>>(A, B, C);

- GPU on simple matrix addition

// Kernel definition
__global void MatAdd(float A[N][N], float B[N][N],
float C[N][N])

{

int i = threadIdx.x;

int j = threadIdx.y;

C[i][3J] = A[i][]J] + B[i][J]:
}

int main()

// Kernel invocation with one block of N * N * 1 threads

int numBlocks = 1;
dim3 threadsPerBlock(N, N);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

L
Thread Hierarchy

- threadldx is a 3-component vector identified using a

- one-dimensional,
- two-dimensional, or
- three-dimensional thread index

- Invoke computation across the elements in a domain such
as a vector, matrix, or volume.

D
Threads and Blocks

- The independent threads are organized into blocks
- The blocks are completely independent

- Each block is given a small area of shared memory that
exists on the multiprocessor.

- Each thread can share data with threads in the same
block

- threads in different blocks may be assigned to different
multiprocessors concurrently

- Any thread in the block is delayed at this synchronization
point until all the other threads in the block complete its
task.

D
thread ID and block ID

- Each thread is identified by its thread ID and each block
identified by its block ID.

- thread |IDs are designed as thread index within the block

- two-dimensional block of size (Dx;Dy)
- thread ID of a thread of index (x; y) is (x + yDx)

- three-dimensional block of size (Dx;Dy;Dz)
- the thread ID of a thread of index (x; y; z) is (x + yDx + zDxDy)

Indexing

l, Threads
Thread ID

Block ID

“«— s
<“— U1 €<—
>
“— U1 €«<—
=
“«—
“«—

w |
N

J

i
v
i
|
i
v

g
—wo | —vweo «—uweo

“— U1 €<— “— 1 €<—
“— 1 €<— <“— 1 €<—
RO | RV —O | €—R <O
— P —= | —P =
D | —nen

OpenGL Serialized VBO data layout

Vertex Position 0
Vertex Position_1
Vertex Position_2

Vertex Position_n

L Vertex Pointer
glVertexPointer(....)

Normal Position 0 —<7
Normal Position_1
Normal Position_2

Normal Position_n

—— Normal Pointer
glNormalPointer(....)

Color Value 0 -
Color Value 1
Color Value_2

| Color Pointer
glColorPointer(....)

Color Vaiue_n

L
Data Mapping with CUDA

- Data mapping begins CUDA assigned each element with
an index number (idx).

- Idx = block ID * Number of threads per block + thread ID

- This assignment presents one to one alignment between
iIdx value and the serialized index while mapping the data
Into each thread

L
Accessing VBO Data

- For a given vertex DATA[idXx],

- corresponding color value can be found in location at
DATA[idx+number of vertices]

- the Normal coordinates will be located at
DATA[idx+number of vertices+Number of color elements].

