
COMPUTER GRAPHICS
CSCI 173
California State University, Fresno

What is the GPU Good at?
• The GPU is good at data-parallel processing

• The same computation executed on many data
elements in parallel – low control flow overhead
with high SP floating point arithmetic
intensity

• Many calculations per memory access
• Currently also need high floating point to integer

ratio
• High floating-point arithmetic intensity and many data

elements mean that memory access latency can be
hidden with calculations instead of big data caches

General Purpose GPU
• General Purpose computation using GPU in applications

other than 3D graphics
• GPU accelerates critical path of application

• Data parallel algorithms leverage GPU attributes
• Large data arrays, streaming throughput
• Fine-grain SIMD parallelism
• Low-latency floating point (FP) computation

GPU Computing Development
• Laptops, desktops, workstations, servers, clusters –

(cell phones? iPods?)

• NVIDIA Volta VG100 GPU 2017
• Projected peak performance of 250 PFLOPS

GPU Architecture
• The GPU is specialized for compute-intensive,

massively data parallel computation (exactly what
graphics rendering is about)
• So, more transistors can be devoted to data processing rather

than data caching and flow control

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

CUDA
• “Compute Unified Device Architecture”

• CUDA C extends C by allowing the programmer to define
C functions, called kernels

• A kernel is defined using the __global__

• The number of CUDA threads that execute that kernel for
a given kernel call is specified using a new <<<...>>>
execution configuration

Computational Example
• GPU on simple vector addition

• GPU on simple matrix addition

Thread Hierarchy
• threadIdx is a 3-component vector identified using a

• one-dimensional,
• two-dimensional, or
• three-dimensional thread index

• invoke computation across the elements in a domain such
as a vector, matrix, or volume.

Threads and Blocks
• The independent threads are organized into blocks
• The blocks are completely independent
• Each block is given a small area of shared memory that

exists on the multiprocessor.
• Each thread can share data with threads in the same

block
• threads in different blocks may be assigned to different

multiprocessors concurrently
• Any thread in the block is delayed at this synchronization

point until all the other threads in the block complete its
task.

thread ID and block ID
• Each thread is identified by its thread ID and each block

identified by its block ID.

• thread IDs are designed as thread index within the block

• two-dimensional block of size (Dx;Dy)
• thread ID of a thread of index (x; y) is (x + yDx)

• three-dimensional block of size (Dx;Dy;Dz)
• the thread ID of a thread of index (x; y; z) is (x + yDx + zDxDy)

Indexing

OpenGL Serialized VBO data layout

Data Mapping with CUDA

• Data mapping begins CUDA assigned each element with
an index number (idx).

• idx = block ID * Number of threads per block + thread ID

• This assignment presents one to one alignment between
idx value and the serialized index while mapping the data
into each thread

Accessing VBO Data
• For a given vertex DATA[idx],

• corresponding color value can be found in location at
DATA[idx+number of vertices]

• the Normal coordinates will be located at
DATA[idx+number of vertices+Number of color elements].

